Data quality issues in collaborative filtering
نویسندگان
چکیده
In this paper, we present our experience in applying collaborative filtering to real-life corporate data. The quality of collaborative filtering recommendations is highly dependent on the quality of the data used to identify users’ preferences. To understand the influence that highly sparse server-side collected data has on the accuracy of collaborative filtering, we ran a series of experiments in which we used publicly available datasets and, on the other hand, a real-life corporate dataset that does not fit the profile of ideal data for collaborative filtering. We have performed a series of experiments on two standard data sets (EachMovie and Jester) and a real-life corporate data.
منابع مشابه
A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملQoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملData Quality and Sparsity Issues in Collaborative Filtering on Web Logs
In this paper, we present our experience in applying collaborative filtering to real-life corporate data in the light of data quality and sparsity. The quality of collaborative filtering recommendations is highly dependent on the quality of the data used to identify users’ preferences. To understand the influence that highly sparse server-side collected data has on the accuracy of collaborative...
متن کامل